qPCR

Multiple imputation and direct estimation for qPCR data with non-detects

Quantitative real-time PCR (qPCR) is one of the most widely used methods to measure gene expression. An important aspect of qPCR data that has been largely ignored is the presence of non-detects: reactions failing to exceed the quantification …

Auto-regressive modeling and diagnostics for qPCR amplification

Current methods used to analyze real-time quantitative polymerase chain reaction (qPCR) data exhibit systematic deviations from the assumed model over the progression of the reaction. Slight variations in the amount of the initial target molecule or …

Fully Bayesian imputation model for non-random missing data in qPCR

We propose a new statistical approach to obtain differential gene expression of non-detects in quantitative real-time PCR (qPCR) experiments through Bayesian hierarchical modeling. We propose to treat non-detects as non-random missing data, model the …

A benchmark for microRNA quantification algorithms using the OpenArray platform

Several techniques have been tailored to the quantification of microRNA expression, including hybridization arrays, quantitative PCR (qPCR), and high-throughput sequencing. Each of these has certain strengths and limitations depending both on the …

On Non-Detects in qPCR Data

Quantitative real-time PCR (qPCR) is one of the most widely used methods to measure gene expression. Despite extensive research in qPCR laboratory protocols, normalization and statistical analysis, little attention has been given to qPCR …